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Abstract—The purpose of this research is to optimize the 

extraction of classification features. This includes the optimal 
adjustment of parameters used to compute features as well as an 
objective and quantitative method to assist in choosing a priori 
data collection parameters (e.g., the insonification frequencies of 
a multi-frequency sonar). To accomplish this, a kernel machine is 
employed and implemented with the kernel matching pursuits 
(KMP) algorithm. The KMP algorithm is computationally 
efficient, allows the use of arbitrary kernel mappings, and 
facilitates the development of a technique to quantify 
discriminating power as a function of each feature. A method for 
feature optimization is then presented and evaluated on 
simulated and experimental data. The experimental data is 
derived from low-resolution, multi-frequency sonar and consists 
of a large feature space relative to the available training data. 
The proposed method successfully optimizes the feature 
extraction parameters and identifies the (much smaller) subset of 
features actually providing the discriminating capability. 

I. INTRODUCTION 
One of the most substantial challenges in implementing a 

machine learning algorithm is in deciding what measurements 
or features to extract from the raw sensor data and present to 
the learning machine. This process of feature extraction is 
often done heuristically where the algorithm designer chooses 
a set of (hopefully informative) features, and the result is often 
a large feature set relative to the available training data. To 
appreciate the ease with which this feature space can grow 
exponentially, consider the low-resolution, multi-frequency 
sonar application addressed in this paper. 

In this application, objects can be insonified at any number 
of frequency values spanning almost four octaves. The 
challenge is to determine how many frequencies and what 
values will produce the most informative feature set. Once the 
frequencies of insonification are determined, one approach for 
the creation of features is to make object measurements at 
each frequency and compute the ratios of these measurements 
at every frequency pairing. For example, one may measure the 
width of an object at each insonification frequency and then 
compute the ratio (or variation in) width at every 
insonification frequency paring. For this sort of feature, the 
addition of every new insonification frequency produces an 
order d2 growth in feature space for each measurement (e.g., 
object width, depth, etc.).  

In addition to optimizing sensor settings, many features 
have parameters that must also be tuned. For example, objects 
in sonar imagery are often blurred or fuzzy, and the object’s 
true extent may not be obvious. Therefore, an object in an 

image is often defined by all pixels greater than some 
threshold below the maximum pixel value. This produces 
another set of feature extraction parameters that the algorithm 
designer must choose and somehow optimize. These examples 
illustrate the challenge faced in designing a feature set and the 
need for a technique to optimize features during the extraction 
process.  

Traditional feature selection techniques offer methods to 
choose adequate subsets of features. However, these methods 
are typically combinatorial searches that involve training the 
classifier on various subsets of the full feature space and 
tracking subsequent changes in classifier performance. While 
this is a useful technique, it is tedious, expensive, and 
typically only searches a small subset of feature set 
configurations. 

To truly optimize features during the extraction process in a 
computationally tractable fashion, one would desire the ability 
to directly measure the discriminating power of each 
individual feature. With this capability, each feature could be 
optimized, ranked, and either retained or discarded as non-
informative. To this end, this research approaches the feature 
set design / optimization problem within the framework of 
kernel learning machines. This framework facilitates the 
quantification of the discriminating power of each feature and 
the means to tune its extraction parameters. 

II. KERNEL MACHINES 
Kernel machines are the product of recent developments in 

the field of Statistical Learning Theory [1]-[2]. This field is 
concerned with solving the learning problem, which equates 
to minimizing risk, R(α), as defined in (1). In this equation, L 
is the loss or discrepancy between the correct answer, y, and 
the learning machine’s estimate of the correct answer, 

)(ˆ αx,fy =  where x is an input feature vector and α 
represents the learned parameters. The difficulty in 
minimizing this risk functional is that a complete enumeration 
of the joint probability distribution, p(x, y), is unknown and 
only a limited training set, (xj, yj) for j = 1…J, is available to 
the learning process.  

( )∫= )(),(,)( ydPfyLR x,αxα  (1) 

It is this fundamental issue that is addressed by one of the 
most significant contributions of this field: the establishment 
of a bound on the generalization ability of a learning machine. 
This principle states that with bounded probability the 
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inequality of (2) holds where the risk functional evaluated on 
previously unseen data, RTest(α), (i.e., generalization ability), 
is bounded by the risk over the training data, RTrain(α), plus a 
function g. In this formulation, g is a function of the number 
of training exemplars, J, and the capacity of the learning 
algorithm, h. The capacity of a learning machine measures the 
complexity or sophistication of the function set from which 
the learning machine is allowed to employ in modeling the 
task at hand. 

),()()( hJgRR TrainTest +≤ αα  (2) 

While in practice the bound in (2) is difficult to exploit 
directly, its rather profound implication is that an optimal 
solution to the learning problem is achieved via an appropriate 
balance between J and the capacity (rather than between J and 
the number of free parameters in the model). This notion has 
led to the development of kernel machines, which are 
expressed in a general form in (3). In this equation, 
(restricting our discussion henceforth to the classification 
problem) jŷ  is the estimated class label of the jth data sample, 

xj, with yj ∈ {±1} ∀j. 

( ))(ˆ j
T

j Ksigny xw=  (3) 

If this were a linear classifier (i.e., if jŷ  = sign(wTxj)), jŷ  

would be formed by simply projecting the data vector onto the 
weight vector and applying a threshold.1 In this case, the 
decision boundary is a linear hyperplane drawn directly in 
feature space. 

Obviously, this approach would hardly be robust as most 
real-world classification problems require a decision surface 
more sophisticated than a simple hyperplane. Therefore, a 
standard approach is to learn a more complex decision surface 
directly in feature space (e.g., an artificial neural network). 
However, recalling the desire to quantify and control the 
capacity from (2), the kernel machine first performs a 
nonlinear projection, K(•), from feature space into a new 
space (kernel space) and then learns a simple decision 
boundary (a hyperplane) in this new space. 

The purpose of K is twofold; first, the specification of this 
mapping places an upper bound on classifier capacity, h. This 
significantly improves the chances of designing a learning 
machine with good generalization ability as expressed in (2). 
Second, an appropriate choice of K should make the problem 
easier (i.e., a non-separable problem in feature space should 
be more separable in kernel space). This is possible not only 
because a nonlinear mapping can rearrange the data with 
respect to the decision boundary but also because K may map 
to a substantially higher-dimensional space (recall any non-
separable problem can be made linearly separable via a 
sufficient increase in dimensionality [3]). 

There are many approaches to solving the general kernel 

 
1 In practice, the threshold or offset is often learned by augmenting the data 

vector: xj = [1, x1, x2…xD]T for a D-dimensional feature space. 

machine form in (3). One of the most popular and well-
performing is the support vector machine (SVM) [4]. The 
general approach of the SVM is to minimize the following 
functional 

∑− j jj mλ2

2
1 w  (4) 

where λj is a Lagrange multiplier for each data point and mj is 
the margin. In kernel machines, the margin of a point is 
defined as the minimal distance from that point to the decision 
surface, and a common goal is to find w that maximizes the 
margin. While the SVM and its variants can produce state-of-
the-art results, the optimization of (4) requires solving a 
quadratic program over the full dimensionality of kernel space 
using all input data. This renders the SVM computationally 
intractable for many large real-world problems, and many 
techniques have emerged to obviate this issue [5]-[6]. 
Nevertheless, this issue has also prompted many researchers 
to consider alternate means of solving (3) in a more 
computationally tractable fashion. 

III. KERNEL MATCHING PURSUIT 
One such alternative is the kernel matching pursuit (KMP) 

algorithm, which solves (3) with K(xj) replaced with Φ, which 
is the kernel design matrix.2 In this formulation, each element 
Φij = K(θi,xj) constitutes the (scalar) result of the kernel 
functional applied to the jth data vector, xj, and the ith basis 
function, θi. Following this notation, ϕ (θi.) = ϕi is the ith row 
of Φ, which is the kernel functional result of every data vector 
and the ith basis θi. 

A. Learning Φ and w 
Typically, the full kernel design matrix Φ is constructed 

using every data vector xj as the set of basis functions θi (i.e., 
Φij = K(xi,xj) ∀ i, j). Let the full kernel design matrix 
constructed in this fashion be represented as ΦFull, and note 
the substantial size of ΦFull and associated computational 
issues regarding its manipulation (e.g., traditional SVM 
algorithms). However, the KMP approach is to iteratively 
build Φ(t) by one basis at each iteration, t, starting with an 
empty matrix at t = 0, Φ(0) = {∅}. A greedy approach to this 
construction was first proposed in [7] and several algorithms 
were developed for its highly efficient computation. However, 
since the objective herein is feature optimization, a different 
approach developed in [8], [9] is employed. 

In this approach, an error is defined as 

[ ] YΦw −=
TtTe )(  (5) 

Where Y = [y1, y2 …yJ]T, and the objective is to minimize a 
weighted least squares error 

)(/ ΣΣee trE T= . (6) 

 
2 In KMP and other newer kernel machines, Φ is no longer restricted to 

only Mercer kernels as it is with the SVM. 



 

In this objective function, Σ is a diagonal matrix whose 
elements place a weight on each data vector and tr(•) is the 
trace operator. A common choice for the diagonal elements of 
Σ is the reciprocal of the number of exemplars in that class. 
This construction of Σ is used to mitigate the effects of 
unbalanced class sizes in the training set. A well-known 
minimizer to (6) is the weighted least squares solution 

ΣYΦMw )(1 t−=  (7) 

where the Fisher Information matrix, M, is 

( )Ttt )()( ΦΣΦM = . (8) 

While the above equations provide an efficient means to 
compute the weight vector, the key to feature optimization is 
in the way Φ(t) is constructed. First, the full kernel design 
matrix ΦFull is constructed in typical fashion by using every 
data vector as the set of bases. Then ΦFull is augmented by 
concatenating a vector of all ones on top of the first row to 
serve as the offset for the hyperplane in kernel space (e.g., the 
SVM solves for the offset separately as the parameter b [5]). 
The empty kernel matrix of iteration zero, Φ(0), is populated at 
iteration one with the offset row from ΦFull (i.e., Φ(1) = Full

1φ ).  
Afterwards, the error for the current iteration, E(t), is 

computed by solving (5)-(8). The error for the next iteration 
can then be expressed as 

( )n
tt EE φδ−=+ )()1(  (9) 

where ϕn is any basis (i.e., row) from ΦFull not yet included in 
Φ(t). To choose the best basis, δ(ϕn) is computed for all 
remaining bases and the one that maximizes δ(ϕn) is chosen 
and concatenated to Φ(t). 

( ) [ ] [ ]btrn
tT

n )(/
2)( ΣΣYφwaφ −=δ  (10a) 

( )Tn
t φΣΦa )(=  (10b) 

( ) ( ) aMaφΣφ
1)( −

−= tTT
nnb  (10c) 

This process continues until a stopping criterion is met such as 
reaching threshold on the relative error decrease [9] or the 
Fisher Information matrix becoming sufficiently rank 
deficient. 

B. Feature Optimization 
The function δ in (9) effectively quantifies the decrease in 

classification error due to the inclusion of the next basis δ(ϕn). 
The authors of [8] capitalize on this principle by optimizing 
the mapping into kernel space as a function of discriminating 
power (i.e., maximize δ as a function of the tunable 
parameters in K). The work proposed herein takes the similar 
tact of maximizing δ as a function of the individual feature 
extraction parameters. Recall each element of ϕi is the result 
of the kernel functional K(θi,xj) applied to the jth data vector; 
also, each element of the jth data vector, xdj, corresponds to the 

dth feature or measurement of that data exemplar. Therefore, 
by holding i constant, δ(ϕi) = δ(K(θi, xj)) ∀ j is optimized by 
tuning each of the D measurements that constitute xj. 

This concept forms the basis of the feature optimization 
technique developed in this paper. Let η = [η1, η2…] 
represent the collection of all adjustable parameters over all D 
measurements (e.g., frequencies, thresholds, etc.). Then for a 
fixed i, δ(ϕi) becomes a function of η and can be optimized. 
In the following section, this process is illustrated in detail and 
demonstrated on simulated and experimental data.  

However, in practice, not all features are amenable to 
optimization in this fashion. For example, insonification 
frequency is a sensor setting, and in many cases, the data 
acquisition and algorithm training processes are decoupled 
and occur at different points in time. In this event, a feature 
set must be developed based on pre-collected training data 
acquired over a set of pre-determined sensor settings. Here the 
ability to quantify the relative discriminating power of each 
individual feature is of great value to the process of feature set 
design. Through this ability, training data can be collected 
over a wide range of sensor settings, and the algorithm 
designer can then efficiently and objectively choose the best 
sensor configuration(s) within the constraints of the 
application.  

To illustrate this principle, consider the use of a Gaussian 
functional as a kernel mapping. 

( ) ( )jii
T

ji

eK jiij

xθQxθ
xθ

−−−
==Φ

2
1

),( γ  (11) 

In this equation, γ is a radius parameter and is a parameter to 
adjust for optimizing the projection into kernel space. The 
variable Qi is a diagonal matrix whose elements [q1, q2,…qD] 
∈ [0,1] serve as coefficients for each dimension in feature 
space (i.e., Q is D by D by I). Therefore, each qd is adjusted 
individually for each θi, and δ(ϕn) is maximized as a function 
of Qi (as well as η). In this fashion, the elements of Qi reflect 
the relative discriminating power of each feature. 

Table I contains pseudocode for training the KMP 
algorithm with feature optimization. In practice, the 
optimization of η is typically performed over the first few 
iterations and the resulting optimum (or mean, etc.) value is 
chosen. The entire algorithm is then repeated with η fixed at 
this value to optimize Q. 

IV. EXPERIMENTAL RESULTS 

A. Results from Simulated Data 
To illustrate this procedure, consider a 2-class problem with 
each class drawn from 2-dimensional, partially overlapping 
Normal distributions as illustrated in Fig. 1. From this raw 
data, a 4-dimensional feature space is constructed as follows: 

x1 ∼ N(-1,1) 
x2 = v1 
x3 = v2 + N(mean(v2), 3-η1) 



 

Table I 
PSEUDOCODE FOR TRAINING THE KMP ALGORITHM WITH FEATURE 

OPTIMIZATION 

1. Extract features, xj, from raw data 

2. Compute ΦFull (full, augmented kernel design matrix) 

3. Initialize Φ(1) = ϕ1
Full

 

4. Loop 

   4.a. Compute M, w, e, & E 

   4.b. Check for stopping criteria 

   4.c. Choose δ(ϕn) to add to Φ(t) as arg max δ(ϕn) ∀ n not already in Φ(t) 

   4.d. Optimize η:  maximize δ[ϕn(η)] for n from Step 4.c 

   4.e. Optimize Q:  maximize δ[ϕn(Q)] for n and η from Steps 4.c-4.d 

   4.f. Update Φ(t+1) with new ϕn computed from optimized η and Q  

 
x4 ∼ N(3,1). 

By design, this feature set has two non-informative 
dimensions (the 1st and 4th) and a noise term with an 
adjustable variance added to the 3rd dimension. From the 
discussion in the previous section, one would expect the 
optimization of Q to suggest the only information is contained 
in the 2nd and 3rd features (i.e., Q ≈ diag([0, 1, 1, 0])) and the 
optimal value of η1 ≈ 3. 

Table II presents results obtained using 100 randomly 
drawn samples for training and 100 for testing. The first row 
in the table presents results for the standard KMP algorithm 
with no optimization and serves as the baseline. The second 
row illustrates that the optimum value of η significantly 
improves performance. It can also be seen that the optimized 
value of η (for this finitely sampled training set) is close to its 
true optimal value. The third row indicates that by optimizing 
Q slightly better performance is achieved with fewer basis 
functions. As discussed in Section II, one of the goals of a 
kernel machine is to minimize classifier capacity, and 
minimizing the number of bases directly contributes to this 
goal. 

An extremely valuable piece of information not apparent in 
the results of Table II is the implication of the values of Q. In 
the first few iterations of the algorithm, Q assumed a value 
that was to be expected (i.e., Q1 ≈ [0, 0.5, 0.5, 0]). However, 
as the algorithm progressed, the value of Q began to approach 
the identity matrix (i.e., Q11 ≈ I). This behavior can be 
explained as follows. As the first few bases are being added to 
Φ(t), the KMP is partitioning the kernel space on a gross scale 
and clearly should not consider the 1st and 4th non-informative 
features. However, as the size of Φ(t) grows, the KMP is 
effectively fine tuning the decision boundary, and since there 
are only a finite number of samples in the training set, it is 
using every sample in every dimension to best fit the training 
data. 

This insight is extremely valuable to the algorithm designer 
trying to choose sensor configurations and design a feature 
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Fig. 1.  Simulated data drawn from two normal distributions. Raw data space 
is 2-dimensional (v1, v2). 

set. Specifically, the 1st and 4th features are helping the KMP 
better fit the training data. However, this is clearly due to 
finite sample size effects rather than actual information 
contained in these features. The fact that the 1st and 4th 
elements of Q are approximately zero in the beginning of the 
learning process directly indicates this. Therefore, by 
observing this behavior in Q, the algorithm designer can 
replace these features with more informative measurements or 
eliminate them and reduce the dimensionality of feature space. 

B. Results from Multi-frequency Sonar Data 
To illustrate this principle on actual data, consider the use 

of a low-resolution, mechanically steered sonar to classify 
underwater objects. This is a useful application due to the 
affordability and availability of these sensors; however, the 
low image resolution often obviates traditional image-based 
techniques common in high-resolution imagery. This is 
illustrated in Fig. 2 where a sphere and cylinder are insonified, 
and it is not obvious how to correctly classify the objects 
based on the imagery alone. It has been demonstrated that a 
useful approach to this problem is to insonify the objects at 
multiple frequencies and examine the backscatter variations 
over frequency [10], which is the approach adopted herein. 

The target set for this experiment consists of a cylinder and 
sphere of approximately the same diameter and a cylinder 
length of approximately 3X the diameter. The targets are 
insonified multiple times at 4 frequencies, {f1, f2 ≅ 1.5f1, f3 ≅ 
2f1, f4 ≅ 3f1}, and the cylinder over 3 aspects, {0°, 45°, 90°}. 
For each object in each image, 17 measurements are made and 
used to construct the features. Of these 17 measurements, 5 
are textural based and are estimated from the gray level co-
occurrence matrix (GLCM) [11]. The GLCMs are computed 
in standard fashion using multiple offsets in the vertical 
direction; the GLCM statistics are then estimated for each 
offset and averaged. The remaining 12 measurements are 
geometric, and all measurements are listed in Table III. The 
 



 

Table II  
 EXPERIMENTAL RESULTS FROM SIMULATED DATA 

Number of 
Misclassified Exemplars (%)  

Training Testing 

Number of Basis 
Functions Used 

No optimization 
η = [0] 9 (4.5%) 20 (10) 16 (8) 

Optimize η only 
ηopt = [2.82] 

3 (1.5) 10 (5) 16 (8) 

Optimize Q with 
η = [2.82] 1 (0.5) 10 (5) 11 (5) 

 
bottom 4 geometric measurements in the right-hand column 
are derived from an estimated ellipse that best encloses the 
object while A2(Z) is a corrected Anderson-Darling statistic 
that measures the quality of Gaussian fit [12]. 

After the measurements in Table III are made, the features 
are computed by taking the ratio of each measurement for 
each of the 6 possible frequency pairings—for F = {f1, f2, f3, 
f4}, the pairings are {f1/f2, f1/f3, f1/f4, f2/f3, f2/f4, f3/f4}. These 
ratios form the actual features presented to the classifier. To 
train and test the classifier, a set of 70 exemplars is randomly 
divided into 39 training and 31 testing exemplars (where one 
exemplar is a set of images over F). This random selection 
process is repeated 3 times to form 3 different data sets. 

As with the simulated data, the first step in the training 
process is to optimize η. For this feature set, η = η1 is a 
threshold (in dB) used in extracting most of the geometric 
measurements. Specifically, to make measurements on a 
object in an image, the extent of the object must be specified. 
This is accomplished by considering the object to be 
comprised of all pixels η1 dB below the maximum pixel value 
in the object. The optimization of η1 is performed and the 
average value over the 3 data sets is found to be η1 = 3.9 dB. 

The next step is to determine which features are actually 
providing discriminating power and which ones can be 
discarded. The 17 object measurements computed over the 6 
frequency pairings result in a 102-dimensional feature space. 
While this is clearly too large of a space to characterize with 
only 39 training exemplars, this imbalance between training 
samples and feature space dimensionality is common. As is 
often the case, the measurements of Table III represent an 
intuitively compiled list of hopefully informative 
measurements and the frequency pairings represent a 
subjective, a priori estimate limited by practical data 
collection constraints. However, it is unclear during the initial 
specification of these features which ones will actually prove 
useful in classification. 

The process of identifying the useful features begins by 
training the classifier (using the optimal η1) on the full (102 
dimensional) feature set. This serves as a baseline for 
comparison and the results are listed in the first group of 
Table IV. The next step is to optimize Q and use it to prune 
 

R
an

ge
 (m

)

Aspect (deg)
    (a)   

R
an

ge
 (m

)

Aspect (deg)
    (c)   

R
an

ge
 (m

)

Aspect (deg)
    (b)   

 
Fig. 2.  A sphere (b) and hollow cylinder ((a) = Aspect 2 & (c) = Aspect 3) are 
insonified at the same frequency. 

the feature set. Unfortunately, with such a large feature space, 
Qi = I ∀ i and this optimization step is not helpful. This 
phenomenon can be understood by recalling that given a high 
enough dimensionality any two classes can be perfectly 
separated. In such an overly large feature space, the classifier 
is using all dimensions equally to fit (over train) the training 
data. Therefore, the initial reduction in feature space is done 
as follows. 

The classifier is trained 4 separate times by redefining F as 
only containing 3 of the 4 original frequencies. It was found 
that F = {f1, f3, f4} reduced the feature space to 51 dimensions 
and caused no decrease in classifier performance. This is 
illustrated as the second group of results in Table IV. For 
comparison, the third group of results illustrates what happens 
if only two frequencies are used. In this case, performance 
improves for some of the data sets with a change in the 
number of basis functions used. 

Afterwards, F is fixed as a subset of the original 
frequencies, F = {f1, f3, f4}, and Q is optimized. With the 
dimensionality of feature space more commensurate with the 
size of the training set, the optimization of Q proceeds as 
expected and Qopt is inspected to identify and remove the non-
informative features. This procedure results in the reduced 
feature set referred to in the fourth group of Table IV. The 
membership of this reduced feature set is indicated in Table 
III where only the measurements followed by a ♦ are included 
and some of these are only computed for a subset of frequency 
ratios (indicated by a set of ratios following the ♦). From 
these results, significant gains in performance are achieved 
using almost half of the original number of basis functions.  

As a final check, the previously omitted frequency pairings 
involving f2 are replaced in the reduced feature set and found 
to add no value to classifier performance. Therefore, it is 
concluded that the omission of f2 was a valid choice. In the 
last step, the projection into kernel space is optimized to 
produce the best performance with the fewest number of basis 
 



 

Table III  
OBJECT MEASUREMENTS USED TO CONSTRUCT FEATURES 

Textural Measurements 

GLCM Contrast GLCM Homogeneity 

GLCM Correlation GLCM Entropy 

GLCM Energy ♦  

Geometric Measurements 

Number of Object Peaks  ♦ {f1/f3} Width (deg) 

Range Location of Largest Object 
  Peak ♦ {f1/f3,  f3/f4} 

Depth (m) 

Peak Pixel Value / Average 
  Background Value ♦ {f1/f4} 

Eccentricity 

Kurtosis ♦ Euler Number ♦ 

Skewness ♦ Solidity ♦ {f1/f3} 

A2(Z) ♦ Orientation ♦ {f1/f3,  f3/f4} 

 
functions. This is achieved by optimizing γ in the same 
fashion as η1, and this result is in the last group of Table IV.  
While it may be noticed that γ in (11) could be absorbed into 
Q and the two optimized together, this is not done for the 
following reason. The optimization surface of δ[ϕn(Q)] is 
complex, nonlinear, and highly dependent upon initial 
conditions while δ[ϕn(γ)] is less complicated and much less 
dependent on perturbations in initial conditions. Therefore, 
the two are kept separate, Q is optimized first with an initial 
condition of Q = I, and γ is then optimized with an arbitrary 
initial condition. 

V. CONCLUSIONS 
In conclusion, this work has presented a method for 

optimizing the feature extraction process. This method is 
amenable both to extracting parameters that can be adjusted 
during the learning process as well as objectively determining 
data collection parameters (e.g., sensor settings) a priori. This 
provides the algorithm designer a powerful tool for designing 
feature extraction algorithms, specifying optimal sensor 
settings, and performing feature selection based on a 
quantitative measure. 

ACKNOWLEDGEMENT 
This work was partially supported by the Very Shallow 

Water / Surf Zone MCM Reconnaissance project sponsored 
by Dr. T. Swean of the Office of Naval Research, ONR 
321OE. 

 
 

 
 
 
 
 

Table IV  
 EXPERIMENTAL RESULTS FROM SONAR DATA 

Number of 
Misclassified Exemplars 

(%) 
Data 
Set Feature Set 

Training Testing 

Number of 
Basis 

Functions 
Used 

1 0 (0%) 8 (26) 12 (30) 

2 0 (0) 8 (26) 12 (30) 

3 

Full Feature Set 
F = {f1, f2, f3, f4} 

0 (0) 8 (26) 12 (30) 

1 0 (0) 8 (26) 12 (30) 

2 0 (0) 8 (26) 12 (30) 

3 

Full Feature Set 
F = {f1, f3, f4} 

0 (0) 8 (26) 12 (30) 

1 0 (0) 1 (3) 16 (40) 

2 0 (0) 8 (26) 10 (25) 

3 

Full Feature Set 
F = {f1, f4} 

0 (0) 7 (23) 10 (25) 

1 0 (0) 1 (3) 6 (15) 

2 0 (0) 8 (26) 7 (18) 

3 

Reduced Feature 
Set 

F = {f1, f3, f4} 0 (0) 4 (13) 7 (18) 

1 0 (0) 3 (10) 5 (13) 

2 0 (0) 4 (13) 3 (8) 

3 

Optimized γ = 1.16 

0 (0) 6 (19) 4 (10) 
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